Mechanical characterization of protein L in the low-force regime by electromagnetic tweezers/evanescent nanometry.
نویسندگان
چکیده
Mechanical manipulation at the single molecule level of proteins exhibiting mechanical stability poses a technical challenge that has been almost exclusively approached by atomic force microscopy (AFM) techniques. However, due to mechanical drift limitations, AFM techniques are restricted to experimental recordings that last less than a minute in the high-force regime. Here we demonstrate a novel combination of electromagnetic tweezers and evanescent nanometry that readily captures the forced unfolding trajectories of protein L at pulling forces as low as 10-15 pN. Using this approach, we monitor unfolding and refolding cycles of the same polyprotein for a period of time longer than 30 min. From such long-lasting recordings, we obtain ensemble averages of unfolding step sizes and rates that are consistent with single-molecule AFM data obtained at higher stretching forces. The unfolding kinetics of protein L at low stretching forces confirms and extends the observations that the mechanical unfolding rate is exponentially dependent on the pulling force within a wide range of stretching forces spanning from 13 pN up to 120 pN. Our experiments demonstrate a novel approach for the mechanical manipulation of single proteins for extended periods of time in the low-force regime.
منابع مشابه
Characterization of Power Transformer Electromagnetic Forces Affected by Winding Faults
Electromagnetic forces in power transformer windings are produced by interaction between the leakage fluxes and current passing them. Since the leakage flux distribution along the windings height is in two axial and radial directions, so the electromagnetic forces have two components, radial and axial. There is a risk that a large electromagnetic force due to the short circuit or inrush current...
متن کاملQuantitative high-resolution sensing of DNA hybridization using magnetic tweezers with evanescent illumination.
We applied the combined approach of evanescent nanometry and force spectroscopy using magnetic tweezers to quantify the degree of hybridization of a single synthetic single-stranded DNA oligomer to a resolution approaching a single-base. In this setup, the 200 nucleotide long DNA was covalently attached to the surface of an optically transparent solid support at one end and to the surface of a ...
متن کاملCanalization of subwavelength images by electromagnetic crystals
The original regime of operation for flat superlenses formed by electromagnetic crystals is proposed. This regime does not involve negative refraction and amplification of evanescent waves in contrast to the perfect lenses formed by left-handed media. The subwavelength spatial spectrum of a source is canalized by the eigenmodes of the crystal having the same longitudinal components of wave vect...
متن کاملContractile prestress controls stiffening and fluidization of living cells in response to large external forces
We report the simultaneous characterization of timeand force-dependent mechanical properties of adherent cells in the physiologically relevant regime of large forces. We used magnetic tweezers to apply forces to magnetic beads bound to the cytoskeleton, and recorded the resulting deformation (creep response). The creep response followed a weak power law at all force levels. Stress stiffening an...
متن کاملCondensation prevails over B-A transition in the structure of DNA at low humidity.
B-A transition and DNA condensation are processes regulated by base sequence and water activity. The constraints imposed by interhelical interactions in condensation compromise the observation of the mechanism by which B and A base-stacking modes influence the global state of the molecule. We used a single-molecule approach to prevent aggregation and mechanical force to control the intramolecul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 96 9 شماره
صفحات -
تاریخ انتشار 2009